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Abstract
A two-parameter model on a directed lattice is introduced to represent the
growth and spread of clusters on the half-plane. The model exhibits a
phase transition in the compact directed percolation universality class between
a state where clusters are finite with probability one and a state where clusters
are infinite with non-zero probability. In the finite regime, exact expressions
are given for the mean perimeter length and area of the generated clusters for a
variety of different boundary conditions. An illustrative example is considered,
namely a forest fire spreading before a prevailing wind along the floor and sides
of an idealized valley.

PACS numbers: 02.50.−r, 05.50.+q, 64.60.Cn

1. Introduction

Cluster growth models on square lattices [1, 2], especially those that are directed in some
way [3], have been widely studied with a view to gaining a better understanding of forest
fires, avalanches, epidemics and so on. Most of these models have not been solved exactly.
So-called compact cluster growth models on the other hand are generally analytically tractable
whilst retaining important, non-trivial features. An important sub-set of these relates to models
in the compact directed percolation (CDP) universality class [3–5], which, for example, can
even be solved in the presence of constraining boundaries or walls [6–9]. In the present paper,
a probabilistic compact cluster growth model closely related to CDP is defined and explicitly
solved in the context of cluster formation on the half-plane (‘hemispherical’ growth). This
builds upon previous work [10, 11] but is more general, particularly with regard to allowing
for differing growth rates in the two principal growth directions. The canonical example used
to motivate the work is the spreading of a forest fire before a prevailing wind along the floor
and sides of an idealized valley, starting from a single burning tree on the valley floor. Other
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Figure 1. A typical cluster with 28 sites (circles), together with its associated perimeter polygon
(solid line, defined on the dual lattice) of length 34. The cluster width is 7. The dotted lines link
sites on the same chemical shell, and this cluster was generated in ten time steps. The activity of
the polygon is x14 y20 z28; the probabilistic weight of the cluster is px

6 py
9 qx

14 qy
7.

examples include the formation of plumes or related structures resulting from an ‘injection’
process, where there is a natural tendency to spread (radially) away from the initial growth
point.

The model features a phase transition from a state where the clusters are bounded with
probability 1 to a state where the clusters are unbounded with non-zero probability. The
behaviour is controlled by two, independent parameters, one for each of the two principal
axes of the lattice. Specific quantities of interest are the mean perimeter length and area of
the clusters (assuming these are finite), as well as the critical parameter values and exponents
that govern the transition. For the present model, all these can be found exactly. This is the
principal motivation of the work, and the ideas and techniques used should find application
elsewhere also. We present one such example by considering a generalization of the model that
turns out to be closely related to stack polygon models of two-dimensional vesicle structure
[12]. With reference to forest fires, certain features of the solution are also of interest from a
direct physical perspective.

2. The model

One can consider a square lattice defined on the upper half-plane (figure 1). Lattice sites are
denoted by integer pairs (x, y), so that y � 0. Individual sites belong to a unique shell (whose
‘chemical’ distance from the origin is |x|+y) and are characterized by a state variable σ where
σ = 1 corresponds to occupied and σ = 0 corresponds to unoccupied. At time t = 0, the site at
the origin (0, 0) is considered to be occupied with probability 1. At discrete time t, the
individual states of the sites whose chemical distance from the origin is t are updated
(probabilistically) depending upon the state of the nearest-neighbour sites in the preceding
shell. If x �= 0 and y �= 0, there are two such neighbouring sites and the conditional probability
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rules are

P [σ = 1|σx, σy ] = σx(1 − σy)px + σy(1 − σx)py + σxσy

P [σ = 0|σx, σy ] = 1 − P [σ = 1|σx, σy ]

where σ x, σ y are the states of the preceding sites reached by moving in the x, y directions,
respectively, and px, py are (fixed) parameters that control the growth of the cluster. Explicitly,
P[1|0, 0] = 0, P[1|1, 0] = px, P[1|0, 1] = py and P[1|1, 1] = 1. If either x or y = 0, there is
only one neighbour site on the preceding shell. Here the rules are simply: P[1|σ x] = σ x px

and P[1|σ y] = σ y py. In this way, successive shells are updated in time such that the cluster
growth is always either parallel to the y-axis or away from the y-axis, but never towards the
y-axis (figure 1). The resulting clusters are fully compact (i.e. contain no holes), ensured by
the condition P[1|1, 1] = 1. This plays an important role in enabling the model to be solved
exactly.

In the context of forest fires, figure 1 can be taken to be an ‘aerial’ view of a two-sided
‘valley’, where a given tree has ‘elevation’ |x| with respect to the valley floor (the y-axis).
The fire starts with a single burning tree on the valley floor. Fires can spread uphill, i.e. away
from the valley floor, and also parallel to the valley floor in the direction of increasing y (the
prevailing wind direction), but (in this model) never downhill. The parameters px, py thus
reflect the slope, strength of the wind, etc. It should be stressed that this model is quite distinct
in character from recently studied lattice forest fire models that are motivated by entirely
different considerations and are still not fully understood, see e.g. [13–15].

It is useful at this point to present some of the key results that characterize the model’s
behaviour. The critical boundary in the (px, py) parameter space is the line px + py = 1.
For px + py < 1, the mean perimeter length, L, and area, S, of the clusters are finite with
probability 1. The perimeter length is defined to be the length of the perimeter of the self-
avoiding polygon defined on the dual lattice that bounds the cluster as tightly as possible
(figure 1). The area is simply the number of sites that are occupied. These quantities are given
by

L(px + py < 1) = 2 +
2(1 + px − py)

(1 − py)[1 − (px + py)]
(1)

S(px + py < 1) = 2pxpy

[1 − (px + py)]2
+

1 + px − py

(1 − py)[1 − (px + py)]
. (2)

For px �= 0 and py �= 0, both L and S diverge as px + py → 1− with exponents characteristic
of the CDP universality class [5]. If either px = 0 or py = 0, the problem is strictly one-
dimensional, and the appropriate limits can be verified by elementary means. If both px = 0
and py = 0 only the original site will be occupied, so L = 4 and S = 1, as expected.

3. Analysis

3.1. Area-perimeter generating functions

A natural starting point to understand the model behaviour is to formally enumerate all
the allowed polygons (clusters) by constructing their area-perimeter generating function
G(x, y, z) ≡ ∑

Cijsx
iyj zs [16]. Here, x and y are the horizontal and vertical perimeter

activities, z is the area activity, and Cijs is the number of clusters with i horizontal boundary
elements, j vertical boundary elements and area s (see figure 1). No confusion with the earlier
usage of x and y to also denote spatial co-ordinates should arise. To proceed, we note that every
polygon of interest can be represented as the concatenation (overlap) of two, so-called staircase
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Figure 2. The cluster in figure 1 arises from the concatenation (overlap) of two staircase polygons
with shared sites along the y-axis. The activity of the staircase polygon on the left (dotted line) is
x8 y12 z16, and on the right (solid line) is x8 y16 z16. To get the correct activity for the composite
polygon, these are multiplied together and divided by x2y2nzn, where n = 4, which accounts for
common (or redundant) edges and sites.

polygons [16–19], each of which has exactly the same extension along the y-axis (figure 2).
By extension, we mean the precise number of sites, n, on the y-axis that is occupied. Let the
relevant staircase polygon generating function (so specified with respect to its extension along
the y-axis) be hn(x, y, z) [17]. Then

G(x, y, z) =
∞∑

n=1

hn(x, y, z)2

x2y2nzn
. (3)

The structure of (3) can easily be understood as follows. The numerator counts the two
(overlapping) staircase polygons. Since these staircase polygons share common sites along
the y-axis, it is necessary to prevent over-counting of sites and boundary elements; see also
the discussion in [10] and the caption to figure 2. This is achieved through the factor in the
denominator of (3).

To progress, it is necessary to provide information about hn(x, y, z). As explained in
the appendix (where other, more general, results are also presented), hn obeys the following
recursion relation,

hn+2 − z(1 + y2 − x2zn+1)hn+1 + y2z2hn = 0 (4)

with h0 ≡ x2. The full, explicit solution of (4) for z �= 1 is known (for x = y) [17], but in a
form (q-series) that is not very useful in the present context. Fortunately, progress can be made
without knowing it. Setting z = 1, one can solve for hn(x, y, 1) using standard techniques
(see the appendix). One finds that

hn(x, y, 1) = x2ξn n � 0 (5)

where

ξ(x, y) = 1 − x2 + y2 −
√

(1 − (x2 + y2))2 − 4x2y2

2
. (6)
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It immediately follows from (3) that the perimeter generating function is

G(x, y) = x2ξ2

y2 − ξ2
. (7)

This result enumerates (by perimeter) the class of self-avoiding polygons on a square lattice
generated by the model (see e.g. figure 1). In particular, setting x = y enumerates these
polygons by their total perimeter length �. Setting x = y in (6, 7) and simplifying gives the
following result:

G(y) ≡
∑

�

C�y
� = y2

2

[
1√

1 − 4y2
− 1

]
= y4 + 3y6 + 10y8 + 35y10 + · · · .

One can readily obtain a closed-form expression for the number of allowed clusters of a given
perimeter length C�;

C� = 2�−3

√
π

�
(

�
2 − 1

2

)
�

(
�
2

) � � 4 � even.

As � → ∞, the number of allowed clusters of perimeter length � therefore grows as

C� ∼ 1√
2π

2�−2

√
�

.

3.2. Evaluating cluster moments

To calculate the cluster moments, one needs to introduce the probabilistic weighting of a given
cluster. To do so, the following procedure must be implemented, based on adapting the ideas
in [10]. First, set x = √

pxqyx
′ and y = √

pyqxy
′ in (3), where qx ≡ 1−px and qy ≡ 1−py .

This step gets most of the weighting of a given cluster correct, as a straightforward expansion
of (3) quickly verifies (at least for small clusters). However, an additional factor of (pxpy)

−1qn
x

also has to be inserted into the summand of (3) before the summations are carried out to get
the probabilistic weighting of the common sites on the y-axis exactly correct (see also the
discussion in [10]). This provides a new generating function

�(px, py, x
′, y ′, z) ≡ 1

p2
xqypy

∞∑
n=1

hn

(√
pxqyx

′,√pyqxy
′, z

)2

x ′2y ′2npn
yz

n
. (8)

If one sets z = 1 and uses (5), the summations in (8) can be carried out explicitly and the
following generating function results:

�(x ′, y ′, px, py) =
(

qy

py

)
x ′2ξ2

pyy ′2 − ξ2
. (9)

The significance of this result is as follows. When expanded as a power series in x ′iy ′j , it
enumerates the probability of generating a finite cluster whose horizontal and vertical edges
number i and j, respectively. Therefore, setting x ′ = y ′ in (9) enumerates the probability
P�(px, py) of generating a finite cluster of perimeter length �,

�(y ′, px, py) ≡
∑

�

P�(px, py)y
′�.

Such an expansion is rather cumbersome. However, by setting y ′ = 1, one has an expression
for the total probability, Q, of generating a finite cluster. Alternatively, one has the probability
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P∞ ≡ 1−Q that a given cluster is infinite. For px +py < 1, ξ = py and P∞(px +py < 1) = 0.
For px + py > 1, ξ = qx whereupon,

P∞(px + py > 1) = (px + py − 1)(1 + py − px)

py

(
py − q2

x

) > 0.

The line px + py = 1 marks the critical boundary, at each point of which the critical exponent
β = 1. As expected, the model is in the CDP universality class [5].

One can also evaluate directly from (9) the mean cluster width, W , and perimeter length,
L, by differentiating with respect to x ′ and y ′. For px + py < 1,

W(px + py < 1) ≡ 1

2

(
x ′ ∂�

∂x ′

)∣∣∣∣
x′=y′=1

= 1 + px − py

1 − (px + py)
. (10)

For px = 0 or py = 0, the limits of this expression are easy to verify. The relevant expression
for L is

L(px + py < 1) ≡
(

x ′ ∂�

∂x ′ + y ′ ∂�

∂y ′

)∣∣∣∣
x′=y′=1

(11)

which reduces, after some straightforward algebra, to (1). Both (1) and (10) diverge at all
points on the critical line with the CDP exponent τ = 1 [5]. For px + py > 1, both W and
L are infinite unless one ignores the infinite cluster. This can be done in principle [5, 10] but
is not relevant to the present discussion, and the regime px + py > 1 is not considered any
further in this paper.

A straightforward generalization of (11) permits higher order moments to be evaluated.
This is laborious in general; however, it is relatively straightforward to show that the leading
order divergence goes as

Lk(px + py < 1) ≡ 〈�k〉 ∼ Ak

(1 − (px + py))2k−1
.

The calculation of the mean area, S, follows similar lines but is more involved, since one
has to differentiate (8) with respect to z before setting z = 1 [10]. One can, however, set
x ′ = y ′ = 1 from the outset, i.e.,

S ≡
(

z
∂�(px, py, z)

∂z

)∣∣∣∣
z=1

. (12)

Using (8), together with (5) and (6), then gives

S(px + py < 1) = 1

pxpy

∞∑
n=1

[2h′
n(x, y, 1) − nhn(x, y, 1)]|x=√

pxqy ,y=√
pyqx

(13)

where h′
n(x, y, 1) ≡ ∂hn(x, y, z)/∂z|z=1. To derive a general expression for h′

n, one can
differentiate (4) and set z = 1 to obtain

h′
n+2 − (1 + y2 − x2)h′

n+1 + y2h′
n = (1 + y2 − (n + 2)x2)x2ξn+1 − 2y2x2ξn

where (5) has also been employed. This inhomogeneous recursion relation can be solved by
looking for a solution of the form h′

n = [An2 + Bn]ξn. The result is (see also the discussion
in the appendix)

h′
n =

[
x2 +

x4

2[1 − (ξ + λ)]
+

x4ξ

[1 − (ξ + λ)]2

]
nξn +

[
x4

2[1 − (ξ + λ)]

]
n2ξn (14)

where λ = ξ − y2 + x2. The evaluation of (13) now involves only the summation of fairly
standard series and, forpx + py < 1, where ξ = py and λ = px , the result is given by (2).
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The divergence is governed by the CDP exponent γ = 2 [5], except when px = 0 or py = 0
(the one-dimensional case, where γ = 1).

As with the perimeter moments, a generalization of (12) permits, in principle, the higher
order moments to be evaluated, although the recursion relations for the higher order derivatives
of hn become progressively more difficult to solve. Nevertheless, one can show that the leading
order divergence in this case goes as

Sk(px + py < 1) ≡ 〈sk〉 ∼ Bk

(1 − (px + py))3k−1
.

In other words, for this model the area ‘gap-exponent’ � = 3 [5].

3.3. Variants of the basic model

Using the results presented above, and also those presented in the appendix, one can examine
variants of the basic model. To illustrate the possibilities, one such example is considered as
follows. Suppose that the first N sites on the y-axis are occupied with probability 1, and the
(N + 1)th site is unoccupied with probability 1. In this situation, it is clear that the cluster
probability generating function is essentially a single term of (8), but corrected to account for
the conditional nature of the problem. The latter means that a factor of

(
qyp

N−1
y

)−1
has to be

introduced, with the result that

�̂(px, py, x
′, y ′, z) = 1

p2
xq

2
yp

2N
y

hN

(√
pxqyx

′,√pyqxy
′, z

)2

x ′2y ′2NzN
. (15)

By such means one can explore the sensitivity of the cluster growth to the boundary conditions
[11]. It is straightforward to work out the mean perimeter length and area in this new model
using (11) and (12),

L̂(px + py < 1) = 2 +
2N(1 + px − py)

[1 − (px + py)]
(16)

Ŝ(px + py < 1) =
[

1 +
pxqy

[1 − (px + py)]
+

2pxpyqy

[1 − (px + py)]2

]
N +

pxqyN
2

[1 − (px + py)]
. (17)

The presence in (17) of the N2 term (whose divergence is governed by the one-dimensional
exponent γ = 1) is significant in that, for large N, this term will dominate unless one is very
close to the transition point. In other words, only for 1 > px + py > 1 − N−1 will one see the
true nature of the critical behaviour.

Now we consider taking the limit py → 0 in the above analysis. By means of this
technical device, the clusters so generated cannot extend beyond the line y = N − 1 but
they remain compact up to and including that line. The structures resulting are examples of
so-called stack polygons [12, 16] (see figure 3) that, in this instance, are rooted (i.e. defined
with respect to a given origin) and of fixed height N. As well as being of interest in their own
right (both as models of two-dimensional vesicles [12] and in the theory of partitions [16]), in
the present context such structures represent the spreading of clusters with a fixed boundary
beyond which they cannot extend. In the context of a forest fire, for example, this would
correspond to studying fire damage in a valley of fixed length. A given stack cluster has a
weight pM−1

x q2N
x , where M is the number of columns in the stack polygon. The perimeter

probability generating function for such clusters is given by

�̂(px, x
′, y ′) = x ′2y ′2Nq2N

x

(1 − pxx ′2)2N
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y

x

Figure 3. An example of a cluster in the stack polygon limit, with height N = 6 and number of
columns M = 11. The filled circle denotes the origin site; other sites lie at the centres of the squares
(which are defined on the dual lattice). The activity of the cluster polygon is x22 y12 z41, and the
probabilistic weight of the cluster is px

10qx
12.

whilst the moments are

L̂(px) = 2 +
2(1 + px)

(1 − px)
N (18)

Ŝ(px) = N +
px

(1 − px)
N(N + 1). (19)

These results can also be obtained from the starting perspective of studying rooted stack
polygons [20]. This connection between a limiting form of the present model and that of stack
polygons will be explored in more detail elsewhere.

4. Discussion

From a purely technical perspective, the key challenge the above model poses is how to account
for the fact that the cluster ‘lobes’ on each side of the y-axis are coupled together by common
sites on the y-axis. The methods demonstrated for the exact handling of this particular feature
should be of interest in the context of other cluster growth models, such as those based on
stack polygons for example.

Although the transition is controlled by the composite parameter px + py , the cluster
moments are not invariant under the interchange px ↔ py . Even in the limit px + py → 1−,
where the mean area (2) is asymptotically invariant under this interchange, the mean perimeter
length (1) is not. This can be understood as follows. If px > py , a typical cluster will consist
of two lobes (one on each side of the y-axis) spread far apart, and such a configuration will
have a large boundary due to its natural width. If py > px , on the other hand, the cluster
lobes will tend to follow the y-axis, and such a configuration will have a smaller boundary
component due to its width. In other words, the solution reflects the underlying geometry of
the model.

From the physical perspective of forest fires, the present model suggests that if a
strong wind is blowing along the valley (i.e. py → 1), then even a small increase in px

can have dramatic consequences (since infinite clusters can occur once px + py � 1). From
a phenomenological point of view, such changes are almost certain to happen dynamically as
the fire develops (increased ‘up-draft’), leading, on average, to a runaway effect. This accords
with one’s intuition that the effect of wind on forest fire spreading in a confined environment,
such as a valley, will be more dramatic than in an open, flat environment.
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gm,n(x, y, z) z−1gm,n+1(x, y, z) x2zngm-1,n(x, y, z)

n

m

= +

Figure 4. A symbolic diagrammatic expansion for gm,n(x, y, z) based upon taking the two possible
choices for the next perimeter step at the upper vertex (filled square) in the left-hand diagram. This
defines a natural recursive structure for the generating function.

Appendix

The methods used here to derive the key recursion relations are more general than those
presented in, for example, [17], and also provide results that are useful in other settings. Let
the staircase polygon generating function specified with respect to its extension along the
y-axis be hn(x, y, z). This can be written in terms of a more general generating function gmn

(x, y, z) which is specified with respect to its extension along both the x and y axes [10, 11],

hn(x, y, z) =
∞∑

m=1

gmn(x, y, z).

The diagrammatic structure in figure 4 shows that gmn obeys the following recursion relation
(see also [10]),

gmn = z−1gm,n+1 + x2zngm−1,n (A1)

with g11 ≡ x2y2z (a single square). Replacing m with m + 1 in (A1) and summing over m
gives

hn − g1,n = z−1[hn+1 − g1,n+1] + x2znhn. (A2)

One can also write g1,n ≡ y2zhn−1, recognizing that polygons generated by g1,n are all single
squares with a staircase polygon atop (now restricted only with respect to their extension along
the y-axis). For consistency, one also requires h0 ≡ x2. Substituting into (A2), replacing n
with n + 1 and rearranging gives

hn+2 − z(1 + y2 − x2zn+1)hn+1 + y2z2hn = 0 (A3)

which is (4) in the main text. A formal solution with x = y is given in [17].
When z = 1, a trial solution hn ∝ ξn substituted into (A3), together with the boundary

conditions h0 ≡ x2 and hn(x, y, 1) ∼ x2y2n (for x, y → 0), generates (5) and (6) in the main
text. The latter condition comes from recognizing that the lowest order diagram contribution
to hn is a single column of height n and width 1. Alternatively, instead of solving (A3) directly,
one can solve (A1) for gmn (x, y,1), the result being

gmn(x, y, 1) = x2y2λm−1ξn−1 (A4)

where λ = ξ − y2 + x2. It should be noted that ξ and λ satisfy λ = λξ + x2 and ξ = λξ + y2;
these results are particularly useful in simplifying the algebraic manipulations below.
Summing (A4) over m provides a different derivation of (5) in the main text.
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One can consider now the quantity fmn(x, y) ≡ ∂gmn(x, y, z)/∂z|z=1 with f11 = x2y2.
Differentiating (A1) and using (A4) give

fmn − fm,n+1 − x2fm−1,n = (n + 1)x4y2λm−2ξn−1 − x2y2λm−1ξn−1.

One can re-label this equation by interchangingm ⇔ n and x ⇔ y. Exploiting the symmetries
fnm(y, x) = fmn(x, y), λ(y, x) = ξ(x, y) and ξ(y, x) = λ(x, y) results in a second relation,

fmn − fm+1,n − y2fm,n−1 = (m + 1)y4x2ξn−2λm−1 − y2x2ξn−1λm−1.

These two inhomogeneous recursion relations can be solved, although the process is difficult
and laborious. Eventually one finds that the result is

fmn = x2y2

2[1 − (ξ + λ)]
[ξ(1 −λ)m2 + λ(1 − ξ)n2 + 2(1 −λ)(1 − ξ)mn− ξm − λn]λm−1ξn−1

+
x2y2ξλ

2[1 − (ξ + λ)]2
[(1 + ξ − λ)m + (1 + λ − ξ)n − 2]λm−1ξn−1. (A5)

One can re-derive (14) in the main text from (A5) in two ways. First, one can sum over m.
Second, one can use the earlier result g1,n ≡ y2zhn−1 to derive

h′
n(x, y, 1) = f1,n+1

y2
− x2ξn.

Of course, these approaches to deriving (14) are much more cumbersome than the method
used in the main text. However, (A5) may also prove useful in its own right in other contexts,
for example, when one has constraints specified along the x-axis as well as the y-axis (see
e.g. [11]). In fact, all the results in [11] can be extended to the asymmetric case px �= py in
straightforward fashion using (A5).
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